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Abstract. We consider neural networks trained by the symmetric Edinburgh algorithm at 
finite temperature. We show that, while the introduction of the thermal noise affects the 
dynamics in a computable way, it does not change the domains of attraction of stored 
patterns. 

1. Introduction 

Neural networks are systems consisting of a large number N of interconnected neurons, 
where a set of P =  a N  patterns {cf} is stored ( p  = 1, .  . . , P ;  i = 1, .  . . , N ) ;  under 
suitable hypotheses they behave as content-addressable memories as the stored patterns 
can be dynamically retrieved from an initial configuration containing some distortion. 

Neural networks have been intensively studied in the last few years using statistical 
physics methods (Hopfield 1982, Amit et al 1987, Mezard ef nl 1987). In these models 
the state of the neuron is described by an king variable S, = i l  (Si =+1  when the ith 
neuron is active, S. = -1 when it is quiescient) and the synaptic couplings among 
different neurons are provided by a real matrix JjX.  At each time step neurons are 
updated; assuming parallel dynamics, as we shall do  in the present paper, the neuron 
state at time f + 1 is given by the deterministic rule 

where S, = S,( f) and S: = S,( f + 1) are states of the neuron i at the times f and f + 1, 
respectively. One can also introduce a random noise, parametrized in terms of tem- 
perature T = p-' (Little 19741, so that the updating rule becomes probabilistic and 
(1.1) is substituted by 
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where P ( { S : ) l { S , } )  is the probability for neurons having the values I S : }  at time f + ~ ,  

given the network configuration {S,} at time f, and 
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For symmetric synaptic couplings (J ,x =A,) one can show (Peretto 1984) that the 
master equation based on the transition rate (1.2) satisfies detailed balance and tends 
to a stationary Gibbs distribution; therefore, the standard methods of equilibrium 
statistical mechanics can be successfully applied. In this paper we shall consider a 
different problem, i.e. the effect of the random noise on the domains of attraction of 
the stored patterns. 

The domain of attraction of one of the patterns (6 , )  is defined in terms ofthe initial 
overlap between {t,} and {S,(O)}: 

One says that the domain of attraction of {&I is measured by the number m, if any 
initial configuration { S , ( O ) }  having 

... m. "- > m I..C (1.5) 

is attracted towards the fixed point (6 , ) .  

pattern {&I from the initial configuration is 
The crucial parameter describing the ability of the network to retrieve the stored 

K =min y ,  (1.6) 

with 
. N  

where we choose the normalization 

1 J ; = N ~  (1.8) 
i . j = 1  

and assume 

J j i  = 0. (1.9) 

One can show that .fj is a fixed point of the dynamics (1.1) if and only if K > O ;  
moreover, larger values of K correspond to larger basins of attraction (Forrest 1988). 

A systematic study of the K dependence of the basins of attraction has been recently 
made (Kepler and Abbott 1988) by considering networks trained by the so-called, 
Edinburgh algorithm (Wallace 1985, Bruce ef ol 1987, Gardner 1988), which is a local 
iterative learning algorithm that can be used to construct matrices J;,  implementing 
the condition y j a  K. The purpose of the present paper is to study the thermal 
dependence of the domains of attraction and to generalize the T=O results to the case 
of finite temperature. The main result of our analysis is that, for saturated networks 
(i.e. networks having the maximum number of patterns allowed by a given value of 
K ) ,  the size of the domains of attraction is basically independent of temperature and 
is determined only by K :  the random noise slows down the retrieval of the memories, 
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but does not change the critical value m, of the initial overlap that fixes the domain 
of attraction. 

The plan of the paper is as follows. In section 2 we describe the dynamics at T = 0. 
Since we are interested in the generalization to finite temperature we consider symmetric 
synaptic matrices: first we describe the algorithm that generates Jlh; second we discuss 
the properties of saturated networks; finally we review the argument used to determine 
the domain of attraction at zero temperature. In  section 3 we discuss the dynamics at 
T 20 and we compare the theoretical expectations for m,(m,,, p )  with computer data. 
In section 4 we present our results, showing the independence from temperature of 
the domains of attraction and we draw our conclusions. Finally, in the appendix we 
show that the Gardner formula (Gardner 1988) relating, for saturated networks, K to 
0 can be generalized to symmetric synaptic strengths. 

2. Dynamics at T = O  

First of all we describe the symmetric learning algorithm we shall use in the present 
paper. We wish to generate a symmetric matrix of synaptic couplings Jik having 5' as 
fixed points of the dynamics and satisfying, for each i, p, 

The norm of matrix JCh is defined in terms of the scalar product 

I1 J I I  = (2.2) 
and 

N 

( J , U ) =  Z JjmUi,n. ( 2 . 3 )  
J,m=l 

We note that (2.1) reduces to (1.6) and (1.7) if the normalization condition (1.8) is 
satisfied. 

In order to implement (2.1) we consider a modified version of the Edinburgh 
algorithm: one starts from a symmetric random matrix J f '  and at each time step a 
parallel updating in the sites i, j is performed as follows: 

J!"+ J!,'""'= Ji;"'+SJ,, (2.4) 

where J!;' is the matrix of synaptic couplings after m iterations, f ( y )  is a function to 
be described below and E:  is the mask 

The algorithm is iterated until E? = E: = 0, in which case the condition (2.1) is fulfilled. 
This learning algorithm for f =  constant represents a generalization of the Hebb rule 
(Hebb 1949) and coincides with the symmetric version of the Edinburgh algorithm 
(Bruce er a/  1987, Gardner 1988). Different choices can be done for the function f; 
in particular one can show (Abbott and Kepler 1989) that, for 

(2.7) f ( v )  = K + a -  y + J ( ~  +S - 
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and asymmetric matrices, a convergence theorem similar to the perceptron convergence 
theorem (Rosenblatt 1962, Minsky and Papert 1969) exists and, in addition, a remark- 
able increase of the speed of convergence is obtained. The choice (2.7) is called the 
nonlinear rule; for small S the function f is then approximately given by the maximum 
value compatible with the convergence of the algorithm: f =  2(K +S - y ) .  The conver- 
gence theorem in the present case states that if a matrix J* exists such that 
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then the algorithm defined by (2.4) and (2.5) converges in a finite number of steps; 
the proof of the theorem is similar to the one valid for the asymmetric case and it will 
not be repeated here. We have trained networks with N = 200 and 6 = 0.01 for several 
values of K, from K = 0.70 to K = 4.9, with aN independent memory states, where LY 

is the maximum value of the capacity parameter allowed by K ;  in other words we 
have considered (almost) saturated networks. For any value of K there is a maximum 
number of memories P = a,N that can be stored; the saturation value a, is obtained 
by considering the limit q + 1 in the equation: 

where Dt = d f  e x p ( - t 2 / 2 ) / 6 ,  x =  (4 f + K ) / f i  and 

H(x) = Jx+- Dt. (2.10) 

Equation (2.9) has been first obtained for asymmetric matrices (Gardner 1988); its 
extension to symmetric synaptic couplings is discussed in the appendix, where we also 
compare our results with some results previously obtained on this subject (Gardner er 
a1 1989). For the saturation value one obtains 

(2.11) 

The results (2.9)-(2.11) are obtained in the thermodynamical limit (N+m). For finite 
N the maximum number of patterns that can be stored is smaller than a,N; for 
example, a, =0.25 would correspond to K = 1.74 (from (2.11)), whereas the maximum 
value of K that can be reached is K = 1.67 (after 79 iterations). However, it should 
be noted that numerical results do  not depend on the precise determination of K 
around the critical value. By way of example in figure 1 we consider the overlap 
between (5,) and the network configuration after one time step: 

and the final overlap 

(2.13) 

In figure l ( a )  we plot the value of m ,  as a function of K obtained by two simulations 
with the same value of a and different initial overlaps m,; the limiting values of m,, 



Neural networks at finite temperatures 1107 

0 0.5 1.0 1.5 

K 

Figure 1. (a )  First overlap m, as a function of the parameter K for two different values 
of m,: m,=0.60 (upper curve) and mo=0.40 (lower curve): data are taken at a=0.25 
which corresponds to a saturation value K = 1.74. The straight lines are the theoretical 
expectations corresponding to K = 1.74. ( b )  Final overlap m, as a function of K (for 
01 =0.25);  m , =  1 is the theoretical expectation far K = 1.74. 

corresponding to K = 1.74 are computed by using usual formulae (Kepler and Abbott 
1988) and one clearly sees that they are reached, within the errors, already for K = 1.44. 
The same pattern can be recognized in figure l ( b ) ,  where the value mT= 1 is obtained 
for K L 1.40. Since dynamical quantities are more sensitive to a than K ,  we prefer to 
use a instead of K as the parameter describing the domain of attraction; however, it 
is understood that for each vaiue of a the corresponding K can be obtained by solving 

Let us conclude this section by briefly summarizing the approach which fixes the 
basin of attraction at T = O  and for K not too Small ( K  a 0 . 7 )  (Kepler and Abbott 
1988). First of all one observes empirical evidence for the crucial role played by the 
parameter 

(2.11). 

m,  - mo 
I - m ,  

in determining whether the network is attracted towards (&}, starting from an initial 
configuration {SJO)} with overlap m, with {.$,}. As a matter of fact one finds that the 
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probability for the convergence is approximately given by 

(2.14) 

We have checked that this result also holds for exactly symmetric matrices Jjk ; a, has 
the value 

a, = 0.5 (2.15) 

which is almost independent of a, as can be seen from figure 2. On the basis of the 
empirical evidence found in Kepler and Abbott (1988), (2.14) is expected to hold 
exactly in the thermodynamical limit; for finite N ( N = 2 0 0  in our case) we conven- 
tionally define a, as the value at which the probability of a final overlap m,>0.97 is 
larger than 97% 

0 0.2 0.4 0.6 08 

a 

Figure 2. The parameter U" as a function of oi 

In order to determine the basin of attraction at  T = 0 one derives a formula relating 
m, to m, for given K (Forrest 1988, Kepler and Abbott 1988, Krauth et a1 1988b): 

where, for saturated networks, one finds: 

(2.16) 

(2.17) 

The value of the domain of attraction m, is determined by solving the equation 

(2.18) 

In the next section we shall generalize this procedure to finite temperature; we observe 
here that (2.17) also holds for symmetric matrices J , k ;  as a matter of fact the only 
difference in the definition of p ( y )  (Kepler and Abbott 1988) for the asymmetric and 
the symmetric cases is the normalization of the matrix, 1, J i  = N and Z , ,  J?, = N 2  
respectively; however, in the limit N + CO the two conditions become equivalent, so 
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that (2 .17)  holds for symmetric synaptic couplings too. Let us finally observe that the 
effect of the symmetry of J, ,  on the domains of attraction has been also studied by 
Krauth et U /  (1988a), in a different context, i.e. in the one-pattern model. 

3. Dynamics at T#O 

In this section we generalize previous results to finite temperature, when the dynamics 
is provided by the probabilistic rule ( 1 . 2 ) .  From computer data, obtained by almost 
saturated symmetrical networks with various values of a, we first obtain a generalization 
of (2.14) in the form 

PS+ = O(=-a(a,  1 - m ,  T ) )  

where 

a ( a , O ) = u , .  ( 3 . 2 )  

For each value of a, a ( a ,  T )  decreases with T, as can be seen from figure 3 (the curves 
in the figure correspond to a least-squares fit to computer data by a second-degree 
polynomial, i.e. u(a, T )  = a o -  a ,  T-u,T’). The introduction of the temperature does 
not change the shape of the probability function PS+: it simply shifts the curve by 
the amount u ( a ,  T ) - a ( a ,  0), as can be seen from figure 4 where we plot P,,, as a 
function of ( m ,  - m o ) / ( l  - m,) for different values of T.  I t  should be noted that, for 
each a, there is a maximal temperature T, above which retrieval of a stored pattern 
5 is impossible even starting with an initial configuration having overlap m , = l  with 
6. This result appears clearly in figure 5 ,  where we have plotted computer data for the 
final overlap mr as a function of T for different values of a. T,,, is the abscissa of the 
intersection point between the straight line mr= 0.97 with the magnetization curve; 
similar curves were also obtained for the Hopfield model (Amit et a1 1987). 

I n  order to check if the changes of the dynamics we have described above result 
in a variation of the domains of attraction, we now compute the first overlap at finite 

0 0.1 0.2 0.3 0.4 0.5 

T 

Figure 3. Computer data for the parameter a(a, T )  8s il function of the temperature T for 
different values of  0: going from top to bottom corresponds 10 LI =O.IS ,  0.25 and 0.50. 
The curves are polynomial fits to the data. 
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Im, - m o l / ~ l - q l  

Figure 4. The probability Ps-c of almost perfect retrieval (m,20.97)  as a function of 
( m l - m J / ( l  - m o )  for two values of U :  U =0.04 ( 0 )  and 01 =0.15 ( b ) .  From the right to 
the left the histograms correspond to T=O. 0.15 and 0.30. 
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Figure 5. Final overlap m ,  as a function of T for different values of a:  going from right 
to left the data correspond to a =0.04, 0.10, 0.15, 0.35, 0.50 and 0.75. 

temperature. First we write the probability distribution of m,, for a given value of m, 
at T # 0, as follows: 
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where S, = S,(O), S: = S : ( t  = 1) and {t,} is one of the stored patterns. We now compute 
(3.3) by an approach similar to the one used by Kepler and Abbott (1988). By using 
(1.2) and introducing the independent variables h, = l /f i&JIx&,Sx we get 

where 

(3.5a) 

p(h,l m,,) is independent of temperature and in the thermodynamical limit reduces to 

with yl defined in (1.7). We use an exponential representation for 8 ( m ,  - 1/ N X, 5,s:) 
in (3.4) and we get 

exp( -ix/ N sgn h,) exp(ix/ N sgn h,) 
1 +exp(-ZP&lh,l) 1 +exp(ZP&Jh,l) 

+ 
The integrals over the variables h, can be performed in series with the result 

where 

f(x, m o , p ) =  (-l)"{erfc(u;) e x p [ ( u ~ ) ' - ~ ~ ] - e r f c ( u ~ )  exp[(u;)*-u']) 

with 

m 

"=I 

erfc(z)= 1 -erf(z) 

Yiii" 

=- 

and 

U : =  np-+ u 

(3.7) 

(3.8) 

(3.9) 

(3.10a) 

(3.10b) 

(3.11) 
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Therefore in the thermodynamical limit we obtain 
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so that we derive 

with p ( y )  given in (2.17). Equation (3.13) shows a clear dependence of m ,  on T ;  
moreover, it is easily seen that for T+O one again obtains (2.16). 

In figure 6 we compare the analytical result (3.13) with the computer data obtained 
for different T and a. For all values of a we observe clear deviations from the zero 
temperature results: for fixed m,, m ,  decreases as T increases. The overall agreement 
between analytical predictions and computer data is good 

I '  
0 0.2 0.4 06 0.8 1 .O 

mo 

Figure 6. Comparison between the predicted value of m, as a function of m, and computer 
dataforthreedifferentvaluesofu: a = 0 . 0 4 ( a ) .  u=O.15 (b)ando=0.20(c)anddifferent  
temperatures. Going from the top curve to the bottom corresponds to T=O, 0.15 and 0.30. 
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4. Conclusions 

In order to compute the domains of attraction of the stored patterns {&}, we substitute 
o(a ,  T) and m,fm, ,  7) in the equation 

1 .o 

0.8 

m c  

0.4. 

0.2 . .  

For m,(m, ,  T )  we use (3.13), whereas for ~ ( m ,  T )  we employ the polynomial approxi- 
mations to the computer data. By solving (4.1) one obtains m,(a, T ) ,  i.e. the size of 
the domain of attraction as a function of the capacity parameter a and the temperature. 
These results are expressed by the curves of figure 7 which agree fairly well with 
numerical data obtained by the computer simulation. The interesting result we find, 
in the range of values OF T and n where we have data, is that M, depends only on a:  
in other words the 7 dependence of RHS and L H S  of (4.1) cancels out. This is shown 
by the almost straight lines appearing in the figure, which expresses the independence 
of the domain of attraction from the temperature. 

A * * 5 - . . . 
0.6,..-- 

t * 
I ) *  * - 

~ 6 

=.-* . . .  . . - 

Acknowledgments 

We rhank A Maritan for helpful suggestions.and G Cicuta, P Colangelo, N Cufaro. 
Petroni and M Villani for useful discussions. 



1114 

Appendix 

The proof of (2.9) is an extension to symmetric synaptic couplings of the results valid 
for the asymmetric case (Gardner 1988). Basically one has to compute the fraction V, 
of the phase space occupied by matrices satisfying (1.8), (l.9), (2.1) and the symmetric 
condition 

( A I )  

G Nardulli and G Pasquariello 

J.. 'I = J.. .,I' 

V, is given by 
M V'=o 

with 

and 

In order to compute M we write 

Therefore (A3) can be recast in the form 

where 

and 

We now assume that In z,  is self-averaging, so that we only have to compute the 
average (In z )  over the quenched variables CY. In order to do that we introduce n 
replicas and make use of the usual identity 

( z" ) - l  
(Inz)=lim--. 

n-" n 

The average (2") is given by 
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We now use the identity 

and introduce the parameters qep and its conjugate variables Frp as in the Gardner 
calculation 

with the result 

where 

The R H S  of (A141 can be computed by the saddle-point method; the saddle-point 
equations are 

9a.p. 
a G, 

aF,p 
-= 

Assuming replica symmetry one has 

Fep = F 

9.p = 9. 

Equations (A16) became, in the n + O  limit, 

F - A  
'=(.E +F)2 
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where Dt=dtexp(-f2/2)/&, x = ( G f + K ) / G ,  H ( x ) = j Y D z  and 
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where X,, is defined in (A9). 
In conclusion, M in (A21 has the form 

M = 12 e x p ( y )  n -exp( dwi, N 2 S [ E ,  q ] )  
I c k  2?r 

where 

(A221 

In order to compute (A20) we again use the saddle-point method and obtain the 

211 Eq + F q + - .  
2 

S [ E ,  q ] =  a I Dt In H(x)+'l 
2 "E+F 

equations 
WIk = 0 

1 F F q -  
DflnH(x)--In-+-+-  4 q 2  2 

Assuming that both E ( q j  and F ( q )  are regular for q+O,  (A23), together with 
(AlS), give the result 

so that we finally obtain from (A18) the following formula: 

It is easily shown that the limit q + 1 corresponds to M + 0, i.e. the vanishing of 
the fraction of phase space V, defined in ( A 2 ) - ( A 4 ) .  Therefore, in this limit one 
obtains the maximum capacity of the network for a given value of K, i.e. the value a, 
given in (2.11). These results coincide with the formulae obtained by Gardner (1988). 

Let us now compare our result kith the analysis performed by Gardner et al(1989). 
Gardner and coworkers have tried to compute the space of interaction in neural 
networks in the general case, i.e. for any symmetry property of JaX. They parametrize 
the symmetry properties of Jlk in terms of a parameter 7 and observe that in the fully 
connected case one cannot write the fractional volume V,  as a product of volumes 
for each site, due to the fact that different rows of the matrix J,, are correlated; 
therefore, they consider the average over 5: as given by 

(see (8) in their paper) and they find that the cumulant expansion does not converge. 
The main difference between the present work and the one by Gardner e f  al is that 

we consider 
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(see ( A l l ) ) ,  which can be computed exactly as we have already shown. The reason 
why we consider the quantity (A28) instead of (A27) is that, since we only consider 
the special case of symmetric synaptic couplings, corresponding to 7 = 1, we must take 
into account the condition S(J,, - Jki)  and not the general one S ( I j  J;,J,, - 7 N ) .  There- 
fore we are able to write (A7) and compute Inz assuming self-averaging. This is 
different from computing In V,, which, as stressed by Gardner et al, cannot be done 
by the Gardner method. 

Owing to the difficulty in the treatment of the general fully connected case, Gardner 
and coworkers compute the phase space of interaction in a diluted case, where each 
site is connected, on the average, to C other sites ( C c  N ) .  They find analytic 
expressions for a , ( K ,  7) that, for 7 = 1, are lower than the Gardner well-known result. 
On the contrary we have found that the Gardner result is also valid in the symmetric 
fully connected case. It is clear that there is no conflict since in this paper we have 
considered a fully connected network and not a diluted one. It is easy to be convinced 
of such a difference by considering (25) and (26) in the paper by Gardner et al. By 
way of  example, for K = 1.67 these equations give the maximum storage capacity 
a,  = 0.219, whereas, as we have mentioned in section 2, we are able to reach numerically 
the value a = 0.25 with the same value of K :  in other words we find 'experimentally' 
that for fully connected networks the maximum storage capacity is larger than the 
correspondingvalue'obtained for diluted nets and is actually very close to the theoretical 
value, valid for N + 00, predicted by (2.1 1): a, = 0.265 for K = 1.67. 
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